Massachusetts Institute of Technology
Affiliation
Title of work
Compressible quantum matter with vanishing Drude weight
Abstract
We explore the possibility of quantum states of matter that are compressible but have vanishing DC conductivity in the absence of disorder. We show that the composite Fermi liquid emerging from strong interaction in a generic Chern band has zero Drude weight, in stark contrast to normal Fermi liquids. Our work establishes the absence of Drude weight as the defining property of the composite Fermi liquid phase, which distinguishes it from the Fermi liquid or other types of non-Fermi liquids. Our findings point to a possibly wide class of gapless quantum phases with unexpected transport and optical properties.